49 resultados para Serotonin

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oleamide is an endogenous fatty acid primary amide that possesses sleep-inducing properties in animals and that has been shown to effect serotonergic receptor responses and block gap junction communication. Herein, the potentiation of the 5-HT1A receptor response is disclosed, and a study of the structural features of oleamide required for potentiation of the 5-HT2A and 5-HT1A response to serotonin (5-HT) is described. Of the naturally occurring fatty acids, the primary amide of oleic acid (oleamide) is the most effective at potentiating the 5-HT2A receptor response. The structural features required for activity were found to be highly selective. The presence, position, and stereochemistry of the Δ9-cis double bond is required, and even subtle structural variations reduce or eliminate activity. Secondary or tertiary amides may replace the primary amide but follow a well defined relationship requiring small amide substituents, suggesting that the carboxamide serves as a hydrogen bond acceptor but not donor. Alternative modifications at the carboxamide as well as modifications of the methyl terminus or the hydrocarbon region spanning the carboxamide and double bond typically eliminate activity. A less extensive study of the 5-HT1A potentiation revealed that it is more tolerant and accommodates a wider range of structural modifications. An interesting set of analogs was identified that inhibit rather than potentiate the 5-HT2A, but not the 5-HT1A, receptor response, further suggesting that such analogs may permit the selective modulation of serotonin receptor subtypes and even have opposing effects on the different subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocaine and methylphenidate block uptake by neuronal plasma membrane transporters for dopamine, serotonin, and norepinephrine. Cocaine also blocks voltage-gated sodium channels, a property not shared by methylphenidate. Several lines of evidence have suggested that cocaine blockade of the dopamine transporter (DAT), perhaps with additional contributions from serotonin transporter (5-HTT) recognition, was key to its rewarding actions. We now report that knockout mice without DAT and mice without 5-HTT establish cocaine-conditioned place preferences. Each strain displays cocaine-conditioned place preference in this major mouse model for assessing drug reward, while methylphenidate-conditioned place preference is also maintained in DAT knockout mice. These results have substantial implications for understanding cocaine actions and for strategies to produce anticocaine medications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The serotonin transporter (SERT) is a member of the Na+/Cl−-dependent neurotransmitter transporter family and constitutes the target of several clinically important antidepressants. Here, replacement of serine-545 in the recombinant rat SERT by alanine was found to alter the cation dependence of serotonin uptake. Substrate transport was now driven as efficiently by LiCl as by NaCl without significant changes in serotonin affinity. Binding of the antidepressant [3H]imipramine occurred with 1/5th the affinity, whereas [3H]citalopram binding was unchanged. These results indicate that serine-545 is a crucial determinant of both the cation dependence of serotonin transport by SERT and the imipramine binding properties of SERT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies indicated that hyperactivity of the hypothalamo-pituitary-adrenal system is a considerable risk factor for the precipitation of affective disorders, most notably of major depression. The mechanism by which this hyperactivity eventually leads to clinical symptoms of depression is unknown. In the present animal study, we tested one possible mechanism, i.e., that long-term exposure to high corticosterone levels alters functional responses to serotonin in the hippocampus, an important area in the etiology of depression. Rats were injected daily for 3 weeks with a high dose of corticosterone; electrophysiological responses to serotonin were recorded intracellularly from CA1 pyramidal neurons in vitro. We observed that daily injections with corticosterone gradually attenuate the membrane hyperpolarization and resistance decrease mediated by serotonin-1A receptors. We next used single-cell antisense RNA amplification from identified CA1 pyramidal neurons to resolve whether the functional deficits in serotonin responsiveness are accompanied by decreased expression levels of the serotonin-1A receptor. It appeared that expression of serotonin-1A receptors in CA1 pyramidal cells is not altered; this result was supported by in situ hybridization. Expression of corticosteroid receptors in the same cells, particularly of the high-affinity mineralocorticoid receptor, was significantly reduced after long-term corticosterone treatment. The present findings indicate that prolonged elevation of the corticosteroid concentration, a possible causal factor for major depression in humans, gradually attenuates responsiveness to serotonin without necessarily decreasing serotonin-1A receptor mRNA levels in pyramidal neurons. These functional changes may occur by a posttranscriptional mechanism or by transcriptional regulation of genes other than the serotonin-1A receptor gene itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neurosteroid 3α-hydroxysteroid-5α-pregnan-20-one (allopregnanolone) acts as a positive allosteric modulator of γ-aminobutyric acid at γ-aminobutyric acid type A receptors and hence is a powerful anxiolytic, anticonvulsant, and anesthetic agent. Allopregnanolone is synthesized from progesterone by reduction to 5α-dihydroprogesterone, mediated by 5α-reductase, and by reduction to allopregnanolone, mediated by 3α-hydroxysteroid dehydrogenase (3α-HSD). Previous reports suggested that some selective serotonin reuptake inhibitors (SSRIs) could alter concentrations of allopregnanolone in human cerebral spinal fluid and in rat brain sections. We determined whether SSRIs directly altered the activities of either 5α-reductase or 3α-HSD, using an in vitro system containing purified recombinant proteins. Although rats appear to express a single 3α-HSD isoform, the human brain contains several isoforms of this enzyme, including a new isoform we cloned from human fetal brains. Our results indicate that the SSRIs fluoxetine, sertraline, and paroxetine decrease the Km of the conversion of 5α-dihydroprogesterone to allopregnanolone by human 3α-HSD type III 10- to 30-fold. Only sertraline inhibited the reverse oxidative reaction. SSRIs also affected conversions of androgens to 3α- and 3α, 17β-reduced or -oxidized androgens mediated by 3α-HSD type IIBrain. Another antidepressant, imipramine, was without any effect on allopregnanolone or androstanediol production. The region-specific expression of 3α-HSD type IIBrain and 3α-HSD type III mRNAs suggest that SSRIs will affect neurosteroid production in a region-specific manner. Our results may thus help explain the rapid alleviation of the anxiety and dysphoria associated with late luteal phase dysphoria disorder and major unipolar depression by these SSRIs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the contribution of individual serotonin (5-hydroxytryptamine; 5-HT) receptors to mood control, we have used homologous recombination to generate mice lacking specific serotonergic receptor subtypes. In the present report, we demonstrate that mice without 5-HT1A receptors display decreased exploratory activity and increased fear of aversive environments (open or elevated spaces). 5-HT1A knockout mice also exhibited a decreased immobility in the forced swim test, an effect commonly associated with antidepressant treatment. Although 5-HT1A receptors are involved in controlling the activity of serotonergic neurons, 5-HT1A knockout mice had normal levels of 5-HT and 5-hydroxyindoleacetic acid, possibly because of an up-regulation of 5-HT1B autoreceptors. Heterozygote 5-HT1A mutants expressed approximately one-half of wild-type receptor density and displayed intermediate phenotypes in most behavioral tests. These results demonstrate that 5-HT1A receptors are involved in the modulation of exploratory and fear-related behaviors and suggest that reductions in 5-HT1A receptor density due to genetic defects or environmental stressors might result in heightened anxiety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonin systems have been implicated in the regulation of hippocampal function. Serotonin 5-HT2C receptors are widely expressed throughout the hippocampal formation, and these receptors have been proposed to modulate synaptic plasticity in the visual cortex. To assess the contribution of 5-HT2C receptors to the serotonergic regulation of hippocampal function, mice with a targeted 5-HT2C-receptor gene mutation were examined. An examination of long-term potentiation at each of four principal regions of the hippocampal formation revealed a selective impairment restricted to medial perforant path–dentate gyrus synapses of mutant mice. This deficit was accompanied by abnormal performance in behavioral assays associated with dentate gyrus function. 5-HT2C receptor mutants exhibited abnormal performance in the Morris water maze assay of spatial learning and reduced aversion to a novel environment. These deficits were selective and were not associated with a generalized learning deficit or with an impairment in the discrimination of spatial context. These results indicate that a genetic perturbation of serotonin receptor function can modulate dentate gyrus plasticity and that plasticity in this structure may contribute to neural mechanisms underlying hippocampus-dependent behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain serotonin (5-hydroxytryptamine; 5-HT) system is a powerful modulator of emotional processes and a target of medications used in the treatment of psychiatric disorders. To evaluate the contribution of serotonin 5-HT1A receptors to the regulation of these processes, we have used gene-targeting technology to generate 5-HT1A receptor-mutant mice. These animals lack functional 5-HT1A receptors as indicated by receptor autoradiography and by resistance to the hypothermic effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Homozygous mutants display a consistent pattern of responses indicative of elevated anxiety levels in open-field, elevated-zero maze, and novel-object assays. Moreover, they exhibit antidepressant-like responses in a tail-suspension assay. These results indicate that the targeted disruption of the 5-HT1A receptor gene leads to heritable perturbations in the serotonergic regulation of emotional state. 5-HT1A receptor-null mutant mice have potential as a model for investigating mechanisms through which serotonergic systems modulate affective state and mediate the actions of psychiatric drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rates of serotonin synthesis were measured in the human brain using positron emission tomography. The sensitivity of the method is indicated by the fact that measurements are possible even after a substantial lowering of synthesis induced by acute tryptophan depletion. Unlike serotonin levels in human brain, which vary greatly in different brain areas, rates of synthesis of the indolamine are rather uniform throughout the brain. The mean rate of synthesis in normal males was found to be 52% higher than in normal females; this marked difference may be a factor relevant to the lower incidence of major unipolar depression in males.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymorphic regions consisting of a variable number of tandem repeats within intron 2 of the gene coding for the serotonin transporter protein 5-HTT have been associated with susceptibility to affective disorders. We have cloned two of these intronic polymorphisms, Stin2.10 and Stin2.12, into an expression vector containing a heterologous minimal promoter and the bacterial LacZ reporter gene. These constructs were then used to produce transgenic mice. In embryonic day 10.5 embryos, both Stin2.10 and Stin2.12 produced consistent β-galactosidase expression in the embryonic midbrain, hindbrain, and spinal cord floor plate. However, we observed that the levels of β-galactosidase expression produced by both the Stin2.10 and Stin2.12 within the rostral hindbrain differed significantly at embryonic day 10.5. Our data suggest that these polymorphic variable number of tandem repeats regions act as transcriptional regulators and have allele-dependent differential enhancer-like properties within an area of the hindbrain where the 5-HTT gene is known to be transcribed at this stage of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have identified the potential for an important role for serotonin (5-HT) receptors in the developmental plasticity of the kitten visual cortex. 5-HT2C receptors are transiently expressed in a patchy fashion in the visual cortex of kittens between 30–80 days of age complementary to patches demarcated by cytochrome oxidase staining. 5-HT, operating via 5-HT2C receptors, increases cortical synaptic plasticity as assessed both in brain slices and in vivo. Herein, we report that bath application of 5-HT substantially increases the probability of long-term potentiation within 5-HT2C receptor-rich zones of cortex, but this effect is not observed in the 5-HT2C receptor-poor zones. Instead, in these zones, 5-HT application increases the probability of long-term depression. These location-specific effects of 5-HT may promote the formation of compartment-specific cortical responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After periods of high-frequency firing, the normal rhythmically active serotonin (5HT)-containing neurosecretory neurons of the lobster ventral nerve cord display a period of suppressed spike generation and reduced synaptic input that we refer to as “autoinhibition.” The duration of this autoinhibition is directly related to the magnitude and duration of the current injection triggering the high-frequency firing. More interesting, however, is that the autoinhibition is inversely related to the initial firing frequency of these cells within their normal range of firing (0.5–3 Hz). This allows more active 5HT neurons to resume firing after shorter durations of inhibition than cells that initially fired at slower rates. Although superfused 5HT inhibits the spontaneous firing of these cells, the persistence of autoinhibition in saline with no added calcium, in cadmium-containing saline, and in lobsters depleted of serotonin suggests that intrinsic membrane properties account for the autoinhibition. A similar autoinhibition is seen in spontaneously active octopamine neurons but is absent from spontaneously active γ-aminobutyric acid cells. Thus, this might be a characteristic feature of amine-containing neurosecretory neurons. The 5HT cells of vertebrate brain nuclei share similarities in firing frequencies, spike shapes, and inhibition by 5HT with the lobster cells that were the focus of this study. However, the mechanism suggested to underlie autoinhibition in vertebrate neurons is that 5HT released from activated or neighboring cells acts back on inhibitory autoreceptors that are found on the dendrites and cell bodies of these neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the molecular bases of cocaine reward might display sufficient redundancy that either DAT or SERT might be able to mediate cocaine reward in the other's absence. To test this hypothesis, we examined double knockout mice with deletions of one or both copies of both the DAT and SERT genes. These mice display viability, weight gain, histologic features, neurochemical parameters, and baseline behavioral features that allow tests of cocaine influences. Mice with even a single wild-type DAT gene copy and no SERT copies retain cocaine reward/reinforcement, as measured by conditioned place-preference testing. However, mice with no DAT and either no or one SERT gene copy display no preference for places where they have previously received cocaine. The serotonin dependence of cocaine reward in DAT knockout mice is thus confirmed by the elimination of cocaine place preference in DAT/SERT double knockout mice. These results provide insights into the brain molecular targets necessary for cocaine reward in knockout mice that develop in their absence and suggest novel strategies for anticocaine medication development.

Relevância:

20.00% 20.00%

Publicador: